هوش مصنوعی چیست؟ شبیه سازی فرآیندهای هوش انسانی توسط ماشین ها به ویژه سیستم های کامپیوتری است. کاربردهای خاص هوش مصنوعی شامل سیستم های خبره، پردازش زبان طبیعی، تشخیص گفتار و بینایی ماشین است .
هوش مصنوعی چگونه کار می کند؟
از آنجایی که هیاهو در مورد هوش مصنوعی سرعت گرفته است، فروشندگان در تلاش برای تبلیغ نحوه استفاده محصولات و خدمات خود از آن هستند. اغلب، آنچه آنها به عنوان AI از آن یاد می کنند، به سادگی جزئی از فناوری است، مانند یادگیری ماشین.
هوش مصنوعی به پایه ای از سخت افزار و نرم افزار تخصصی برای نوشتن و آموزش الگوریتم های یادگیری ماشین نیاز دارد. هیچ زبان برنامه نویسی به تنهایی مترادف با هوش مصنوعی نیست، اما پایتون، R، جاوا، سی پلاس پلاس و جولیا دارای ویژگی های محبوب توسعه دهندگان هوش مصنوعی هستند.
به طور کلی، سیستمهای هوش مصنوعی با دریافت مقادیر زیادی از دادههای آموزشی برچسبگذاریشده، تجزیه و تحلیل دادهها برای همبستگیها و الگوها، و استفاده از این الگوها برای پیشبینی وضعیتهای آینده کار میکنند.
به این ترتیب، یک ربات چت که با نمونه هایی از متن تغذیه می شود، می تواند یاد بگیرد که تبادلات واقعی با افراد ایجاد کند، یا یک ابزار تشخیص تصویر می تواند با مرور میلیون ها مثال، شناسایی و توصیف اشیاء در تصاویر را بیاموزد.
تکنیکهای جدید هوش مصنوعی که به سرعت در حال بهبود هستند میتوانند متن، تصاویر، موسیقی و سایر رسانههای واقعی را خلق کنند.
برنامه نویسی هوش مصنوعی بر مهارت های شناختی تمرکز دارد که شامل موارد زیر است:
- یادگیری. این جنبه از برنامه نویسی هوش مصنوعی بر به دست آوردن داده ها و ایجاد قوانینی برای چگونگی تبدیل آن به اطلاعات عملی متمرکز است. قوانین، که الگوریتم نامیده می شوند ، دستورالعمل های گام به گام را برای نحوه تکمیل یک کار خاص به دستگاه های محاسباتی ارائه می دهند.
- استدلال. این جنبه از برنامه نویسی هوش مصنوعی بر انتخاب الگوریتم مناسب برای رسیدن به یک نتیجه دلخواه متمرکز است.
- خود اصلاحی. این جنبه از برنامه نویسی هوش مصنوعی برای تنظیم مداوم الگوریتم ها و اطمینان از ارائه دقیق ترین نتایج ممکن طراحی شده است.
- خلاقیت. این جنبه از هوش مصنوعی از شبکه های عصبی، سیستم های مبتنی بر قوانین، روش های آماری و سایر تکنیک های هوش مصنوعی برای تولید تصاویر جدید، متن جدید، موسیقی جدید و ایده های جدید استفاده می کند.
تاریخچه هوش مصنوعی چیست؟
مفهوم اشیای بی جان دارای هوش از زمان های قدیم وجود داشته است. هفائستوس خدای یونانی در اسطوره ها به صورت جعل خدمتکاران روبات مانند از طلا به تصویر کشیده شد.
مهندسان در مصر باستان مجسمه های خدایان را که توسط کشیشان متحرک شده بودند ساختند. در طول قرنها، متفکرانی از ارسطو گرفته تا رامون لول، الهیدان اسپانیایی قرن سیزدهم تا رنه دکارت و توماس بیز، از ابزارها و منطق زمان خود برای توصیف فرآیندهای فکری انسان به عنوان نمادها استفاده کردند و پایه و اساس مفاهیم هوش مصنوعی مانند بازنمایی دانش عمومی را گذاشتند.
اواخر قرن نوزدهم و نیمه اول قرن بیستم کار اساسی را به وجود آورد که باعث ایجاد رایانه مدرن شد. در سال 1836، چارلز بابیج، ریاضیدان دانشگاه کمبریج و آگوستا آدا کینگ، کنتس لاولیس، اولین طرح را برای یک ماشین قابل برنامه ریزی اختراع کردند.
دهه 1940 جان فون نویمان، ریاضیدان پرینستون، معماری کامپیوتر برنامه ذخیره شده را تصور کرد – این ایده که برنامه کامپیوتر و داده هایی که پردازش می کند را می توان در حافظه کامپیوتر نگه داشت. و وارن مک کالوچ و والتر پیتس پایه و اساس شبکه های عصبی را بنا نهادند.
دهه 1950 با ظهور رایانه های مدرن، دانشمندان می توانند ایده های خود را در مورد هوش ماشینی آزمایش کنند. یک روش برای تعیین اینکه آیا کامپیوتر دارای هوش است یا خیر توسط ریاضیدان بریتانیایی و رمز شکن جنگ جهانی دوم، آلن تورینگ ابداع شد. آزمون تورینگ بر توانایی رایانه در فریب دادن بازجویان به این باور بود که پاسخهای آن به سؤالات آنها توسط یک انسان ساخته شده است.
1956. به طور گسترده از حوزه مدرن هوش مصنوعی به عنوان شروع امسال در یک کنفرانس تابستانی در کالج دارتموث نام برده می شود.
این کنفرانس که توسط آژانس پروژه های تحقیقاتی پیشرفته دفاعی (دارپا) حمایت می شود، با حضور 10 تن از افراد برجسته در این زمینه، از جمله پیشگامان هوش مصنوعی، ماروین مینسکی، الیور سلفریج و جان مک کارتی، که به عنوان ابداع اصطلاح هوش مصنوعی شناخته می شود، برگزار شد.
همچنین آلن نیول، دانشمند کامپیوتر، و هربرت آ. سیمون، اقتصاددان، دانشمند علوم سیاسی و روانشناس شناختی در این مراسم حضور داشتند.
این دو، نظریه پرداز منطق پیشگامانه خود را ارائه کردند، یک برنامه کامپیوتری که قادر به اثبات برخی قضایای ریاضی است و به عنوان اولین برنامه هوش مصنوعی از آن یاد می شود.
دهه 1950 و 1960. در پی کنفرانس کالج دارتموث، رهبران حوزه نوپای هوش مصنوعی پیش بینی کردند که هوش مصنوعی معادل مغز انسان در گوشه و کنار است و حمایت عمده دولت و صنعت را به خود جلب می کند.
در واقع، نزدیک به 20 سال تحقیقات پایه با بودجه خوب، پیشرفت های قابل توجهی را در هوش مصنوعی ایجاد کرد: به عنوان مثال، در اواخر دهه 1950، نیوول و سایمون الگوریتم حل مسئله عمومی (GPS) را منتشر کردند که در حل مسائل پیچیده کوتاهی می کرد، اما پایه های اولیه را برای آن ایجاد کرد.
توسعه معماری های شناختی پیچیده تر؛ و مک کارتی Lisp را توسعه دادند ، زبانی برای برنامه نویسی هوش مصنوعی که امروزه هنوز مورد استفاده قرار می گیرد.
در اواسط دهه 1960، پروفسور MIT جوزف وایزنبام ELIZA را توسعه داد، یک برنامه اولیه NLP که پایه و اساس چت ربات های امروزی را پایه گذاری کرد.
دهه 1970 و 1980. دستیابی به هوش عمومی مصنوعی گریزان بود، نه قریب الوقوع، و با محدودیت در پردازش کامپیوتری و حافظه و پیچیدگی مشکل مواجه شد.
دولت و شرکت ها از حمایت خود از تحقیقات هوش مصنوعی عقب نشینی کردند و منجر به دوره ای ماندگار شد که از سال 1974 تا 1980 به عنوان اولین ” زمستان هوش مصنوعی ” شناخته می شود.
در دهه 1980، تحقیق در مورد تکنیکهای یادگیری عمیق و پذیرش صنعت از سیستمهای خبره ادوارد فایگنبام، موج جدیدی از شور و شوق هوش مصنوعی را برانگیخت، اما پس از آن، بودجه دولتی و حمایتهای صنعتی از بین رفت. دومین زمستان هوش مصنوعی تا اواسط دهه 1990 ادامه داشت.
دهه 1990 افزایش قدرت محاسباتی و انفجار داده ها جرقه یک رنسانس هوش مصنوعی را در اواخر دهه 1990 ایجاد کرد که زمینه را برای پیشرفت های چشمگیر در هوش مصنوعی که امروز می بینیم فراهم کرد.
ترکیبی از داده های بزرگ و افزایش قدرت محاسباتی باعث پیشرفت در NLP، بینایی کامپیوتر، روباتیک، یادگیری ماشین و یادگیری عمیق شد.
در سال 1997، با سرعت گرفتن پیشرفت در هوش مصنوعی، Deep Blue از IBM، گری کاسپاروف، استاد بزرگ شطرنج روسی را شکست داد و اولین برنامه کامپیوتری و تبلت بود که یک قهرمان شطرنج جهان را شکست داد.
دهه 2000 پیشرفتهای بیشتر در یادگیری ماشینی، یادگیری عمیق، NLP، تشخیص گفتار و بینایی کامپیوتری باعث ایجاد محصولات و خدماتی شد که شیوه زندگی امروز ما را شکل داده است.
اینها شامل راه اندازی موتور جستجوی گوگل در سال 2000 و راه اندازی موتور توصیه آمازون در سال 2001 است. نتفلیکس سیستم توصیه خود را برای فیلم ها، فیس بوک سیستم تشخیص چهره و مایکروسافت سیستم تشخیص گفتار خود را برای رونویسی گفتار به متن راه اندازی کرد. آیبیام واتسون را راهاندازی کرد و گوگل ابتکار خودران خود، Waymo را آغاز کرد.
دهه 2010 دهه بین 2010 و 2020 شاهد یک جریان ثابت از پیشرفت های هوش مصنوعی بود. اینها شامل راه اندازی سیری اپل و دستیارهای صوتی الکسای آمازون است.
پیروزی های IBM Watson در مورد Jeopardy ; خودروهای خودران؛ توسعه اولین شبکه متخاصم مولد؛ راه اندازی TensorFlow، چارچوب یادگیری عمیق منبع باز گوگل.
تاسیس آزمایشگاه تحقیقاتی OpenAI، توسعه دهندگان مدل زبان GPT-3 و تولید کننده تصویر Dall-E. شکست قهرمان جهان Go Lee Sedol توسط AlphaGo از Google DeepMind. و پیاده سازی سیستم های مبتنی بر هوش مصنوعی که سرطان ها را با درجه بالایی از دقت تشخیص می دهد.
دهه 2020 دهه کنونی شاهد ظهور هوش مصنوعی مولد، نوعی فناوری هوش مصنوعی است که می تواند محتوای جدیدی تولید کند. هوش مصنوعی مولد با یک درخواست شروع می شود که می تواند به شکل متن، تصویر، ویدیو، طرح، نت های موسیقی یا هر ورودی باشد که سیستم هوش مصنوعی بتواند پردازش کند.
سپس الگوریتمهای مختلف هوش مصنوعی در پاسخ به درخواست، محتوای جدید را برمیگردانند. محتوا میتواند شامل مقالهها، راهحلهایی برای مشکلات یا تقلبی واقعی باشد که از تصاویر یا صدای یک شخص ایجاد شده است.
تواناییهای مدلهای زبانی مانند ChatGPT-3، Google’s Bard و Megatron-Turing NLG مایکروسافت جهان را شگفتزده کرده است، اما این فناوری هنوز در مراحل اولیه است و تمایل آن به توهم یا انحراف پاسخها نشان میدهد.
هوش مصنوعی چیست؟ چرا هوش مصنوعی مهم است؟
هوش مصنوعی به دلیل پتانسیل آن برای تغییر نحوه زندگی، کار و بازی ما مهم است. این به طور موثر در تجارت برای خودکار کردن وظایف انجام شده توسط انسان، از جمله خدمات مشتری، تولید سرنخ، تشخیص تقلب و کنترل کیفیت استفاده شده است.
در تعدادی از زمینه ها، هوش مصنوعی می تواند وظایف را بسیار بهتر از انسان ها انجام دهد. به ویژه هنگامی که صحبت از وظایف تکراری و جزئیات محور می شود.
مانند تجزیه و تحلیل تعداد زیادی از اسناد قانونی برای اطمینان از پر شدن صحیح فیلدهای مربوطه، ابزارهای هوش مصنوعی اغلب کارها را به سرعت و با خطاهای نسبتا کمی تکمیل می کنند.
به دلیل مجموعه دادههای عظیمی که میتواند پردازش کند، هوش مصنوعی همچنین میتواند به شرکتها بینشهایی درباره عملیاتهایشان بدهد که ممکن است از آنها اطلاعی نداشته باشند.
جمعیت ابزارهای مولد هوش مصنوعی که به سرعت در حال گسترش است در زمینه هایی از آموزش و بازاریابی گرفته تا طراحی محصول مهم خواهد بود.
در واقع، پیشرفتها در تکنیکهای هوش مصنوعی نه تنها به افزایش کارایی کمک کرده است، بلکه دری را برای فرصتهای تجاری کاملاً جدید برای برخی از شرکتهای بزرگتر باز کرده است.
قبل از موج فعلی هوش مصنوعی، تصور استفاده از نرم افزار کامپیوتری برای اتصال سواران به تاکسی ها سخت بود، اما اوبر با انجام این کار به یک شرکت Fortune 500 تبدیل شده است.
هوش مصنوعی در بسیاری از بزرگترین و موفقترین شرکتهای امروزی، از جمله آلفابت، اپل، مایکروسافت و متا، که از فناوریهای هوش مصنوعی برای بهبود عملکرد و پیشی گرفتن از رقبا استفاده میشود، به مرکزیت تبدیل شده است.
به عنوان مثال، در گوگل، زیرمجموعه آلفابت، هوش مصنوعی در موتور جستجوی آن، خودروهای خودران Waymo و Google Brain که معماری شبکه عصبی ترانسفورماتور را اختراع کرد که زیربنای پیشرفتهای اخیر در پردازش زبان طبیعی است، مرکزی است.
مزایا و معایب هوش مصنوعی چیست؟
شبکههای عصبی مصنوعی و فناوریهای هوش مصنوعی یادگیری عمیق به سرعت در حال تکامل هستند، در درجه اول به این دلیل که هوش مصنوعی میتواند حجم زیادی از دادهها را بسیار سریعتر پردازش کند و پیشبینیها را دقیقتر از آنچه که انسان ممکن است انجام دهد.
در حالی که حجم عظیم داده های ایجاد شده به صورت روزانه یک محقق انسانی را دفن می کند، برنامه های کاربردی هوش مصنوعی با استفاده از یادگیری ماشینی می توانند این داده ها را گرفته و به سرعت آن ها را به اطلاعات قابل اجرا تبدیل کنند.
در زمان نگارش این مقاله، یکی از معایب اصلی هوش مصنوعی این است که پردازش مقادیر زیادی از داده های مورد نیاز برنامه نویسی هوش مصنوعی گران است.
از آنجایی که تکنیکهای هوش مصنوعی در محصولات و خدمات بیشتری گنجانده میشوند، سازمانها نیز باید با پتانسیل هوش مصنوعی برای ایجاد سیستمهای مغرضانه و تبعیضآمیز، عمدا یا سهوا هماهنگ باشند.
مزایای هوش مصنوعی
در زیر برخی از مزایای هوش مصنوعی آورده شده است.
- در مشاغل مرتبط با جزئیات خوب است. ثابت شده است که هوش مصنوعی در تشخیص برخی سرطان ها از جمله سرطان سینه و ملانوما به خوبی یا بهتر از پزشکان عمل می کند.
- کاهش زمان برای کارهای سنگین داده. هوش مصنوعی به طور گسترده در صنایع سنگین داده، از جمله بانکداری و اوراق بهادار، داروسازی و بیمه استفاده می شود تا زمان تجزیه و تحلیل مجموعه های کلان داده را کاهش دهد. به عنوان مثال، خدمات مالی به طور معمول از هوش مصنوعی برای پردازش درخواست های وام و کشف تقلب استفاده می کنند.
- باعث صرفه جویی در نیروی کار و افزایش بهره وری می شود. یک مثال در اینجا استفاده از اتوماسیون انبار است که در طول همهگیری رشد کرد و انتظار میرود با ادغام هوش مصنوعی و یادگیری ماشین افزایش یابد.
- نتایج ثابتی را ارائه می دهد. بهترین ابزارهای ترجمه هوش مصنوعی سطوح بالایی از سازگاری را ارائه میکنند و حتی به کسبوکارهای کوچک نیز توانایی دسترسی به مشتریان را به زبان مادری خود ارائه میدهند.
- می تواند رضایت مشتری را از طریق شخصی سازی بهبود بخشد. هوش مصنوعی میتواند محتوا، پیامها، تبلیغات، توصیهها و وبسایتها را برای مشتریان فردی شخصیسازی کند.
- عوامل مجازی مبتنی بر هوش مصنوعی همیشه در دسترس هستند. برنامه های هوش مصنوعی نیازی به خوابیدن یا استراحت ندارند و خدمات 24/7 ارائه می دهند.
معایب هوش مصنوعی
در زیر برخی از معایب هوش مصنوعی آورده شده است.
- گران.
- به تخصص فنی عمیق نیاز دارد.
- عرضه محدود کارگران واجد شرایط برای ساخت ابزارهای هوش مصنوعی.
- سوگیری های داده های آموزشی خود را در مقیاس منعکس می کند.
- عدم توانایی تعمیم از یک کار به کار دیگر.
- مشاغل انسانی را حذف می کند، نرخ بیکاری را افزایش می دهد.
هوش مصنوعی قوی در مقابل هوش مصنوعی ضعیف
هوش مصنوعی را می توان به دو دسته ضعیف یا قوی طبقه بندی کرد .
- هوش مصنوعی ضعیف ، همچنین به عنوان هوش مصنوعی باریک شناخته می شود ، برای انجام یک کار خاص طراحی و آموزش داده شده است. ربات های صنعتی و دستیاران شخصی مجازی مانند سیری اپل از هوش مصنوعی ضعیف استفاده می کنند.
- هوش مصنوعی قوی ، همچنین به عنوان هوش عمومی مصنوعی (AGI) شناخته می شود، برنامه ریزی را توصیف می کند که می تواند توانایی های شناختی مغز انسان را تکرار کند. هنگامی که با یک کار ناآشنا ارائه می شود، یک سیستم هوش مصنوعی قوی می تواند از منطق فازی برای اعمال دانش از یک دامنه به حوزه دیگر و یافتن راه حل به طور مستقل استفاده کند. در تئوری، یک برنامه هوش مصنوعی قوی باید بتواند هم آزمون تورینگ و هم آرگومان اتاق چینی را پشت سر بگذارد.
4 نوع هوش مصنوعی چیست؟
آرند هنتزه، استادیار زیست شناسی و علوم کامپیوتری و مهندسی در دانشگاه ایالتی میشیگان، توضیح داد که هوش مصنوعی را می توان به چهار نوع طبقه بندی کرد، که از سیستم های هوشمند کار خاص که امروزه به طور گسترده استفاده می شود شروع می شود و به سیستم های حساس پیشرفت می کند. هنوز وجود دارد. دسته بندی ها به شرح زیر است.
- نوع 1: ماشین های راکتیو این سیستمهای هوش مصنوعی حافظه ندارند و مختص وظایف هستند. به عنوان مثال Deep Blue، برنامه شطرنج IBM که گری کاسپاروف را در دهه 1990 شکست داد. Deep Blue می تواند مهره های روی صفحه شطرنج را شناسایی کند و پیش بینی کند، اما چون حافظه ندارد، نمی تواند از تجربیات گذشته برای اطلاع رسانی به آینده استفاده کند.
- نوع 2: حافظه محدود. این سیستم های هوش مصنوعی دارای حافظه هستند، بنابراین می توانند از تجربیات گذشته برای اطلاع رسانی تصمیمات آینده استفاده کنند. برخی از عملکردهای تصمیم گیری در خودروهای خودران به این شکل طراحی شده اند.
- نوع 3: نظریه ذهن. نظریه ذهن یک اصطلاح روانشناسی است. هنگامی که برای هوش مصنوعی اعمال می شود، به این معنی است که سیستم از هوش اجتماعی برای درک احساسات برخوردار است. این نوع هوش مصنوعی قادر به استنباط نیات انسان و پیش بینی رفتار خواهد بود، مهارتی ضروری برای سیستم های هوش مصنوعی برای تبدیل شدن به اعضای جدایی ناپذیر تیم های انسانی.
- نوع 4: خودآگاهی. در این دسته، سیستمهای هوش مصنوعی حسی از خود دارند که به آنها آگاهی میدهد. ماشین های دارای خودآگاهی وضعیت فعلی خود را درک می کنند. این نوع هوش مصنوعی هنوز وجود ندارد.
نمونه هایی از فناوری هوش مصنوعی چیست و امروزه چگونه از آن استفاده می شود؟
هوش مصنوعی در انواع مختلف فناوری گنجانده شده است. در اینجا هفت نمونه آورده شده است.
اتوماسیون. وقتی ابزارهای اتوماسیون با فناوریهای هوش مصنوعی همراه شوند، میتوانند حجم و انواع وظایف انجامشده را افزایش دهند.
به عنوان مثال، اتوماسیون فرآیند روباتیک ( RPA )، نوعی نرم افزار است که وظایف پردازش داده های تکراری و مبتنی بر قوانین را که به طور سنتی توسط انسان انجام می شود، خودکار می کند.
هنگامی که با یادگیری ماشینی و ابزارهای نوظهور هوش مصنوعی ترکیب شود، RPA میتواند بخشهای بزرگتری از مشاغل سازمانی را خودکار کند و رباتهای تاکتیکی RPA را قادر میسازد تا اطلاعات هوش مصنوعی را منتقل کنند و به تغییرات فرآیند پاسخ دهند.
فراگیری ماشین. این علم به کار بردن کامپیوتر بدون برنامه نویسی است. یادگیری عمیق زیرمجموعهای از یادگیری ماشینی است که به زبان بسیار ساده میتوان آن را خودکارسازی تجزیه و تحلیل پیشبینیکننده در نظر گرفت. سه نوع الگوریتم یادگیری ماشین وجود دارد:
- یادگیری تحت نظارت مجموعه داده ها برچسب گذاری می شوند تا الگوها را بتوان شناسایی کرد و برای برچسب گذاری مجموعه داده های جدید استفاده کرد.
- یادگیری بدون نظارت مجموعه داده ها برچسب گذاری نمی شوند و بر اساس شباهت ها یا تفاوت ها مرتب می شوند.
- یادگیری تقویتی . مجموعه داده ها برچسب گذاری نمی شوند، اما پس از انجام یک عمل یا چندین عمل، به سیستم هوش مصنوعی بازخورد داده می شود.
بینایی ماشین. این فناوری به ماشین توانایی دیدن می دهد. بینایی ماشین با استفاده از دوربین، تبدیل آنالوگ به دیجیتال و پردازش سیگنال دیجیتال، اطلاعات بصری را ضبط و تجزیه و تحلیل می کند.
اغلب با بینایی انسان مقایسه میشود، اما بینایی ماشینی محدود به بیولوژی نیست و میتواند برای مثال برای دیدن از طریق دیوار برنامهریزی شود.
در طیف وسیعی از کاربردها از شناسایی امضا تا تجزیه و تحلیل تصویر پزشکی استفاده می شود. بینایی کامپیوتر، که بر پردازش تصویر مبتنی بر ماشین متمرکز است، اغلب با بینایی ماشین ترکیب می شود.
پردازش زبان طبیعی (NLP). این پردازش زبان انسان توسط یک برنامه کامپیوتری است. یکی از قدیمیترین و شناختهشدهترین نمونههای NLP، تشخیص هرزنامه است که به موضوع و متن ایمیل نگاه میکند و تصمیم میگیرد که آیا ناخواسته است یا خیر.
رویکردهای فعلی NLP مبتنی بر یادگیری ماشینی است. وظایف NLP شامل ترجمه متن، تجزیه و تحلیل احساسات و تشخیص گفتار است.
رباتیک. این رشته مهندسی بر طراحی و ساخت ربات ها تمرکز دارد. ربات ها اغلب برای انجام کارهایی استفاده می شوند که انجام آنها یا انجام مداوم آنها برای انسان دشوار است. به عنوان مثال، ربات ها در خطوط مونتاژ تولید خودرو یا توسط ناسا برای جابجایی اجسام بزرگ در فضا استفاده می شوند.
محققان همچنین از یادگیری ماشینی برای ساخت روباتهایی استفاده میکنند که میتوانند در محیطهای اجتماعی تعامل داشته باشند.
ماشین های خودران. وسایل نقلیه خودران از ترکیبی از بینایی کامپیوتر، تشخیص تصویر و یادگیری عمیق برای ایجاد مهارتهای خودکار برای هدایت یک وسیله نقلیه در حالی که در یک خط معین میمانند و اجتناب از موانع غیرمنتظره مانند عابران پیاده استفاده میکنند.
تولید متن، تصویر و صدا. تکنیکهای هوش مصنوعی مولد، که انواع مختلفی از رسانهها را از پیامهای متنی ایجاد میکنند، بهطور گسترده در سراسر کسبوکارها به کار میروند تا طیف به ظاهر نامحدودی از انواع محتوا از هنر واقعی واقعی گرفته تا پاسخهای ایمیل و فیلمنامهها را ایجاد کنند.
کاربردهای هوش مصنوعی چیست؟
هوش مصنوعی راه خود را به بازارهای مختلف باز کرده است. در اینجا 11 نمونه آورده شده است.
هوش مصنوعی در مراقبت های بهداشتی بزرگترین شرط بندی ها بر روی بهبود نتایج بیمار و کاهش هزینه ها است. شرکتها از یادگیری ماشینی برای تشخیص بهتر و سریعتر از انسانها استفاده میکنند.
یکی از شناخته شده ترین فناوری های مراقبت های بهداشتی IBM Watson است. زبان طبیعی را می فهمد و می تواند به سوالاتی که از آن پرسیده می شود پاسخ دهد.
این سیستم دادههای بیمار و سایر منابع داده موجود را استخراج میکند تا یک فرضیه را تشکیل دهد، که سپس با یک طرح امتیازدهی اطمینان ارائه میکند.
سایر برنامه های کاربردی هوش مصنوعی شامل استفاده از دستیاران سلامت مجازی آنلاین و ربات های گفتگو برای کمک به بیماران و مشتریان مراقبت های بهداشتی در یافتن اطلاعات پزشکی، برنامه ریزی قرار ملاقات، درک فرآیند صورتحساب و تکمیل سایر فرآیندهای اداری است.
مجموعه ای از فناوری های هوش مصنوعی نیز برای پیش بینی، مبارزه و درک بیماری های همه گیر مانند COVID-19 استفاده می شود .
هوش مصنوعی در تجارت الگوریتمهای یادگیری ماشین در پلتفرمهای تجزیه و تحلیل و مدیریت ارتباط با مشتری ( CRM ) ادغام میشوند تا اطلاعاتی را در مورد نحوه ارائه خدمات بهتر به مشتریان کشف کنند.
چت بات ها برای ارائه خدمات فوری به مشتریان در وب سایت ها گنجانده شده اند. انتظار می رود پیشرفت سریع فناوری هوش مصنوعی مولد مانند ChatGPT پیامدهای گسترده ای داشته باشد: حذف مشاغل، ایجاد انقلابی در طراحی محصول و اختلال در مدل های تجاری.
هوش مصنوعی در آموزش هوش مصنوعی می تواند نمره دهی را خودکار کند و به مربیان زمان بیشتری برای کارهای دیگر بدهد. می تواند دانش آموزان را ارزیابی کند و با نیازهای آنها سازگار شود و به آنها کمک کند تا با سرعت خودشان کار کنند.
آموزگاران هوش مصنوعی میتوانند پشتیبانی بیشتری از دانشآموزان ارائه دهند و از ماندن آنها در مسیر مطمئن شوند. این فناوری همچنین می تواند مکان و نحوه یادگیری دانش آموزان را تغییر دهد، شاید حتی جایگزین برخی از معلمان شود.
همانطور که توسط ChatGPT، Bard و دیگر مدلهای زبان بزرگ نشان داده شده است، هوش مصنوعی مولد میتواند به مربیان کمک کند تا کار درسی و سایر مواد آموزشی را بسازند و دانشآموزان را به روشهای جدیدی درگیر کنند. ظهور این ابزارها همچنین مربیان را وادار می کند که در مورد تکالیف دانش آموز و تست و بازنگری در سیاست های سرقت ادبی تجدید نظر کنند.
هوش مصنوعی در امور مالی هوش مصنوعی در برنامه های مالی شخصی، مانند Intuit Mint یا TurboTax، مؤسسات مالی را مختل می کند. برنامه هایی مانند اینها داده های شخصی را جمع آوری می کنند و مشاوره مالی ارائه می دهند. برنامه های دیگری مانند IBM Watson در فرآیند خرید خانه به کار گرفته شده است. امروزه نرم افزار هوش مصنوعی بیشتر معاملات را در وال استریت انجام می دهد.
هوش مصنوعی در قانون روند کشف — غربال کردن اسناد — در قانون اغلب برای انسان طاقت فرسا است. استفاده از هوش مصنوعی برای کمک به خودکارسازی فرآیندهای پر زحمت صنعت قانونی باعث صرفه جویی در زمان و بهبود خدمات مشتری می شود.
شرکتهای حقوقی از یادگیری ماشینی برای توصیف دادهها و پیشبینی نتایج، بینایی کامپیوتری برای طبقهبندی و استخراج اطلاعات از اسناد و NLP برای تفسیر درخواستهای اطلاعات استفاده میکنند.
هوش مصنوعی در سرگرمی و رسانه کسب و کار سرگرمی از تکنیک های هوش مصنوعی برای تبلیغات هدفمند، توصیه محتوا، توزیع، کشف تقلب، ایجاد فیلمنامه و ساخت فیلم استفاده می کند. روزنامهنگاری خودکار به اتاقهای خبر کمک میکند تا جریان کار رسانهای را سادهتر کنند و زمان، هزینهها و پیچیدگی را کاهش دهند.
اتاق های خبر از هوش مصنوعی برای خودکارسازی کارهای معمولی مانند ورود داده ها و تصحیح استفاده می کنند. و برای تحقیق در مورد موضوعات و کمک به سرفصل ها. اینکه چگونه روزنامه نگاری می تواند به طور قابل اعتماد از ChatGPT و دیگر هوش مصنوعی مولد برای تولید محتوا استفاده کند جای سوال دارد.
هوش مصنوعی در کدنویسی نرم افزار و فرآیندهای فناوری اطلاعات ابزارهای مولد جدید هوش مصنوعی را می توان برای تولید کد برنامه بر اساس اعلان های زبان طبیعی استفاده کرد، اما روزهای اولیه برای این ابزارها است و بعید است که به زودی جایگزین مهندسان نرم افزار شوند.
هوش مصنوعی همچنین برای خودکارسازی بسیاری از فرآیندهای فناوری اطلاعات ، از جمله ورود داده ها، کشف تقلب، خدمات مشتری، و نگهداری و امنیت پیش بینی شده استفاده می شود.
امنیت. هوش مصنوعی و یادگیری ماشینی در صدر فهرست کلیدواژههای امنیتی هستند که فروشندگان برای بازاریابی محصولات خود استفاده میکنند، بنابراین خریداران باید با احتیاط برخورد کنند.
با این حال، تکنیکهای هوش مصنوعی با موفقیت در جنبههای مختلف امنیت سایبری ، از جمله تشخیص ناهنجاری، حل مشکل مثبت کاذب و انجام تجزیه و تحلیل تهدیدات رفتاری استفاده میشوند.
سازمانها از یادگیری ماشین در نرمافزار مدیریت رویداد و اطلاعات امنیتی ( SIEM ) و حوزههای مرتبط برای شناسایی ناهنجاریها و شناسایی فعالیتهای مشکوک که نشاندهنده تهدید هستند، استفاده میکنند.
با تجزیه و تحلیل دادهها و استفاده از منطق برای شناسایی شباهتها به کدهای مخرب شناخته شده، هوش مصنوعی میتواند هشدار حملات جدید و در حال ظهور را خیلی زودتر از کارکنان انسانی و تکرارهای فناوری قبلی ارائه دهد.
هوش مصنوعی در تولید تولید در ترکیب روبات ها در جریان کار پیشرو بوده است . به عنوان مثال، رباتهای صنعتی که زمانی برای انجام وظایف منفرد برنامهریزی شده بودند و از کارگران انسانی جدا میشدند، به طور فزایندهای به عنوان رباتها عمل میکردند:
روباتهای کوچکتر و چندوظیفهای که با انسانها همکاری میکنند و مسئولیت بخشهای بیشتری از کار را در انبارها، طبقات کارخانهها بر عهده میگیرند. و سایر فضاهای کاری
هوش مصنوعی در بانکداری بانکها با موفقیت از رباتهای گفتگو استفاده میکنند تا مشتریان خود را از خدمات و پیشنهادات آگاه کنند و تراکنشهایی را انجام دهند که نیازی به دخالت انسانی ندارند.
دستیارهای مجازی هوش مصنوعی برای بهبود و کاهش هزینه های انطباق با مقررات بانکی استفاده می شوند. سازمانهای بانکی از هوش مصنوعی برای بهبود تصمیمگیری برای وامها، تعیین محدودیتهای اعتباری و شناسایی فرصتهای سرمایهگذاری استفاده میکنند.
هوش مصنوعی در حمل و نقل علاوه بر نقش اساسی هوش مصنوعی در به کار انداختن وسایل نقلیه خودران، فناوریهای هوش مصنوعی در حملونقل برای مدیریت ترافیک، پیشبینی تاخیرهای پرواز و ایمنتر و کارآمدتر کردن کشتیهای اقیانوسی استفاده میشوند.
در زنجیرههای تامین، هوش مصنوعی جایگزین روشهای سنتی پیشبینی تقاضا و پیشبینی اختلالات میشود، روندی که با کووید-۱۹ شتاب گرفت، زمانی که بسیاری از شرکتها در اثر یک بیماری همهگیر جهانی بر عرضه و تقاضای کالا غافل شدند.